
北大、清华、UvA、CMU等联合发布:大模型逻辑推理能力最新综述
北大、清华、UvA、CMU等联合发布:大模型逻辑推理能力最新综述当前大模型研究正逐步从依赖扩展定律(Scaling Law)的预训练,转向聚焦推理能力的后训练。鉴于符号逻辑推理的有效性与普遍性,提升大模型的逻辑推理能力成为解决幻觉问题的关键途径。
当前大模型研究正逐步从依赖扩展定律(Scaling Law)的预训练,转向聚焦推理能力的后训练。鉴于符号逻辑推理的有效性与普遍性,提升大模型的逻辑推理能力成为解决幻觉问题的关键途径。
研究揭示早融合架构在低计算预算下表现更优,训练效率更高。混合专家(MoE)技术让模型动态适应不同模态,显著提升性能,堪称多模态模型的秘密武器。
现如今,微调和强化学习等后训练技术已经成为提升 LLM 能力的重要关键。
最近一段时间,各家新势力都在角力部署端到端的智能驾驶系统。
让大模型进入多模态模式,从而能够有效感知世界,是最近 AI 领域里人们一直的探索目标。
自主通才科学家的 5 个层级。
AI Agent 领域也存在 scaling law,甚至还在加速。
由于 DeepSeek R1 和 OpenAI o1 等推理模型(LRM,Large Reasoning Model)带来了新的 post-training scaling law,强化学习(RL,Reinforcement Learning)成为了大语言模型能力提升的新引擎。然而,针对大语言模型的大规模强化学习训练门槛一直很高:
在GTC2025大会上,NVIDIA依旧延续着“算力的故事”。如果AI的发展依旧遵循着scaling law(规模定律),那么这个故事还能继续讲下去。
谷歌团队发现了全新Scaling Law!新方法DiLoCo被证明更好、更快、更强,可在多个数据中心训练越来越大的LLM。